28 research outputs found

    Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure

    Full text link
    As machine learning systems move from computer-science laboratories into the open world, their accountability becomes a high priority problem. Accountability requires deep understanding of system behavior and its failures. Current evaluation methods such as single-score error metrics and confusion matrices provide aggregate views of system performance that hide important shortcomings. Understanding details about failures is important for identifying pathways for refinement, communicating the reliability of systems in different settings, and for specifying appropriate human oversight and engagement. Characterization of failures and shortcomings is particularly complex for systems composed of multiple machine learned components. For such systems, existing evaluation methods have limited expressiveness in describing and explaining the relationship among input content, the internal states of system components, and final output quality. We present Pandora, a set of hybrid human-machine methods and tools for describing and explaining system failures. Pandora leverages both human and system-generated observations to summarize conditions of system malfunction with respect to the input content and system architecture. We share results of a case study with a machine learning pipeline for image captioning that show how detailed performance views can be beneficial for analysis and debugging

    Social Biases through the Text-to-Image Generation Lens

    Full text link
    Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software by generating illustrative content with high photorealism starting from a given descriptive text as a prompt. Such models are however trained on massive amounts of web data, which surfaces the peril of potential harmful biases that may leak in the generation process itself. In this paper, we take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images, by focusing on how occupations, personality traits, and everyday situations are depicted across representations of (perceived) gender, age, race, and geographical location. Through an extensive set of both automated and human evaluation experiments we present findings for two popular T2I models: DALLE-v2 and Stable Diffusion. Our results reveal that there exist severe occupational biases of neutral prompts majorly excluding groups of people from results for both models. Such biases can get mitigated by increasing the amount of specification in the prompt itself, although the prompting mitigation will not address discrepancies in image quality or other usages of the model or its representations in other scenarios. Further, we observe personality traits being associated with only a limited set of people at the intersection of race, gender, and age. Finally, an analysis of geographical location representations on everyday situations (e.g., park, food, weddings) shows that for most situations, images generated through default location-neutral prompts are closer and more similar to images generated for locations of United States and Germany

    Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning

    Full text link
    Spurious correlations that degrade model generalization or lead the model to be right for the wrong reasons are one of the main robustness concerns for real-world deployments. However, mitigating these correlations during pre-training for large-scale models can be costly and impractical, particularly for those without access to high-performance computing resources. This paper proposes a novel approach to address spurious correlations during fine-tuning for a given domain of interest. With a focus on multi-modal models (e.g., CLIP), the proposed method leverages different modalities in these models to detect and explicitly set apart spurious attributes from the affected class, achieved through a multi-modal contrastive loss function that expresses spurious relationships through language. Our experimental results and in-depth visualizations on CLIP show that such an intervention can effectively i) improve the model's accuracy when spurious attributes are not present, and ii) directs the model's activation maps towards the actual class rather than the spurious attribute when present. In particular, on the Waterbirds dataset, our algorithm achieved a worst-group accuracy 23% higher than ERM on CLIP with a ResNet-50 backbone, and 32% higher on CLIP with a ViT backbone, while maintaining the same average accuracy as ERM

    Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork

    Full text link
    AI practitioners typically strive to develop the most accurate systems, making an implicit assumption that the AI system will function autonomously. However, in practice, AI systems often are used to provide advice to people in domains ranging from criminal justice and finance to healthcare. In such AI-advised decision making, humans and machines form a team, where the human is responsible for making final decisions. But is the most accurate AI the best teammate? We argue "No" -- predictable performance may be worth a slight sacrifice in AI accuracy. Instead, we argue that AI systems should be trained in a human-centered manner, directly optimized for team performance. We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves. To optimize the team performance for this setting we maximize the team's expected utility, expressed in terms of the quality of the final decision, cost of verifying, and individual accuracies of people and machines. Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance and show the benefit of modeling teamwork during training through improvements in expected team utility across datasets, considering parameters such as human skill and the cost of mistakes. We discuss the shortcoming of current optimization approaches beyond well-studied loss functions such as log-loss, and encourage future work on AI optimization problems motivated by human-AI collaboration.Comment: v
    corecore